Manipulating Data with DataFrames
A DataFrame
in Pandas is a table-like data structure for systematically handling data, similar to Excel.
A DataFrame is a 2-dimensional array
composed of multiple series, with both rows and columns.
Below is a simple code example that creates a DataFrame containing items and sales data and demonstrates data manipulation.
Data Manipulation Example
import pandas as pd
# Create DataFrame
data_frame = pd.DataFrame({
'Item': ['Apple', 'Banana', 'Strawberry', 'Grape'],
'Sales': [1000, 2000, 1500, 3000]
})
# Select a specific column
sales = data_frame['Sales']
print("sales:", sales)
# Filter rows based on a condition
filtered_data = data_frame[data_frame['Sales'] > 1500]
print("filtered_data:", filtered_data)
# Sort data
sorted_data = data_frame.sort_values(by='Sales', ascending=False)
print("sorted_data:", sorted_data)
sales = data_frame['Sales']
selects only the 'Sales' column from the DataFrame, returning it as a series.
Output of print(sales)
0 1000
1 2000
2 1500
3 3000
Name: Sales, dtype: int64
filtered_data = data_frame[data_frame['Sales'] > 1500]
filters and creates a new DataFrame with rows where the 'Sales' value is greater than 1500.
Output of print(filtered_data)
Item Sales
1 Banana 2000
3 Grape 3000
sorted_data = data_frame.sort_values(by='Sales', ascending=False)
sorts the DataFrame in descending order based on the 'Sales' column.
Output of print(sorted_data)
Item Sales
3 Grape 3000
1 Banana 2000
2 Strawberry 1500
0 Apple 1000
Calculating Maximum, Minimum, and Average Values
Methods for calculating the maximum, minimum, and average values of a specific DataFrame column are as follows:
max()
: Maximum valuemin()
: Minimum valuemean()
: Average value
Below is an example that calculates the maximum, minimum, and average values of the 'Sales' column.
Calculating Maximum, Minimum, and Average Values
import pandas as pd
data_frame = pd.DataFrame({
'Item': ['Apple', 'Banana', 'Strawberry', 'Grape'],
'Sales': [1000, 2000, 1500, 3000]
})
# Maximum value
max_sales = data_frame['Sales'].max()
# Output: Maximum value: 3000
print(f'Maximum value: {max_sales}')
# Minimum value
min_sales = data_frame['Sales'].min()
# Output: Minimum value: 1000
print(f'Minimum value: {min_sales}')
# Average value
mean_sales = data_frame['Sales'].mean()
# Output: Average value: 1875.0
print(f'Average value: {mean_sales}')
With Pandas, you can easily perform a variety of data manipulations and calculations.
Want to learn more?
Join CodeFriends Plus membership or enroll in a course to start your journey.